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Alxfracl

A reflector antenna computer program based upon a simple discreet approxinlation  of the
mdiation integral has proven to be extremely easy to adapt to the parallel computing architecture of
the modest number of large-grain computing elements such as are used in the ]ntcl iPSC and
Touchstone Delta parallel machines. It has also proven to bc very efficient since, with retisonablc
size reflectors, parallel efficiencies approaching 98% have been demonstrated.

introduction

One of the simplest reflector antentlti  computer programs is based upon a discrete
approximation of the radiation intcgm] (Rcfcrcnce 1). “l”his calculation replaces the actual reflector
surface with a triangular fi~cet  representation so that the reflector resembles a geodesic dome. ‘1’hc
Physical Optics (1]0) current is assumed to bc constant in magnitude and phase over each facet so
the radiation integral is reduced m a simple summation. ‘1’his program has proven to bc surprisingly
robust and useful for the an:tlysis  of arbitrary reflectors, par[icul:idy  when the near-fickl is dcsirccl
and surfttce  derivatives are not known.

13ccause  of its simplicity, the algorithm has proven to bc extremely easy to adapt to the parallel
computing architecture of a modest number of large-grain computing elements such as are used in
the ]ntel ipsc and “]’ouchstone  ]]c]ta para]]c] machines.

I/or generality, wc consider a dual-reflector calculation, which can be thought of as three
sequential operations: (1) compute the currents on the first reflector using the standard PO
approximation; (2) utilizing the currents on the first reflector as the field generator, compute the
currents on the second reflector; and (3) compute the required field values by summing the fields
from the currents on the second reflector. ‘1’hc most titllc-collslltlliIlg  parl of the calculation is the
computation of the currents on the second reflector due to the currents on the first, since for N x N
triangles on the first reflector, each of the M x M triangles on the second  reflcc[or required an N2
sum over the first, 1 lowcvcr, since each calculation requires Ihc identical number of operations, the
N2 triangles can be evenly distributed over the noclcs,  and the sum done in parallel for each of the
M2 triangles on the second reflector (also evenly distributc(i  over the nodes). In addition, the output
field values can be calculated in parallel with each noctc, summing its respective triangles, and the
final output field obtained by summing the ficlcl in each of the nodes.

l;or reasonable size reflectors, parallel efficiencies approaching 98%, have bcm dmonstratcd.



Physical optics Algorithm

The analysis method utilized is a straightforward numerical integration of the physical optics
radiation integral. Since the inciclent magnetic field is required to evaluate the PO surface current on
the second reflector (see Figure 1), wc choose the following form for the radiation intcgra] (although
the method is identical if the E field is required):

(1)

in which r designates the field point, r’ the source point, R = Ir – r’1 is the distance between thcm,
and ~ = (r — r’) / R is a unit vector. The PO current on the surface .],T is expressed as

with }/,$ (r’) the incident magnetic field.
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Figure 1. Reflector analysis coordinate systems and a typical triangular fi~cct.



I.ct (x,$, y,$, ZL$)  denote the coordinates of the reflector surfi~cc. For the purpose of analysis, the
reflector surface is subdivided into small triangular regions. Within each triangular region, the
actual subrcflector  surface is approximated by a planar surfidce,  or facet. Now, let R~I, Rkz, Rk3 bc
vectors directed to the three vcrliccs of the kth facet. ‘1’hen, vectors along the sides of the Pacct are
given by

and a unit normal nk may be constructed by the following vector operations:

The area Ak of the triangle  is readily calculated from

Ak = & $  -“A)(S – ~l)(S - C)

where

With this triangularization established, the PO smfi~cc current is approximated by

k= 1

where J$k) is the PO current evaluated at the center of the kth facet. ]n other words, the PO surfi~cc
current is assumed to be constant over a fi~cct.  Using this expression in llq. (1) gives the following
approximate ion for the PO radiation integral:

(3)

Notice that a discrete approximation is used for the current as well as the surface. 1 ‘or aid in
convcrgcnce, the distance Rk is chosen to be on the surfttce rather than on the triangular facet.



l)ual-Reflector Calculation

I/or generality, we will consider the dual-reflector calculation; the sitlgle  reflector calculation
can be done in the same manner, but the time associated with the calculation is considerably Icss and
may not require the capabilities of parallel computing.

Referring to l~igure  2, the clual-reflector case consists of a feed, subrcflcctor surfxc,  and main
reflector surface. “l’he field scattered from these surP~ces  is evaluated at a given field point and the
calculation can be thought of as three sequential operations: (1) compute the currents on the first
reflector using the standard PO approximation; (2) utilizing  the currents on the first reflector as the
field generator, compute the currents on the seconcl  reflector; and (3) compute the required field
values by summing the fielcls  from the currents on the second reflector.

Utilizing the method described in the previous section, each surface is subdivided into small
triangular regions, with a typical mesh projected into the x-y plane shown in Figure 3. ‘1’he currents
on the first surface (typically called the subreflcctor) arc evaluated using llq. (2). I/or the examples
considered in this paper, the incident will be, in the form of a cosine to the power Q, although any
desired incident field evaluation could bc used. “1’hus the incident field is of the form

~- j~r’
})~(r’)  = cos~ ((3)---——

r’

where the feed is assumed to bc j~ointing,  tilong the Z~ coordinate and 0 is the polar angle. The
magnetic field incident cm each triangle of the second reflec[or (typically called the main reflector) is
evaluated using llq. (3). l’he currents on each triangle arc then obtained by using the physical optics
approximation of I = 2fi x /1. Observe that to obtain  the current for each triangle of the second
reflector requires a sum over all the triang]cs of the first reflector. ‘1’he field scat Icred from the
second reflector is then evaluated by another application of llq. (3) (or a similar form of the equation
if the E-field is required).

Parallel Algorifhm

Observe that the most til~le-col~slll~lil~g  part of the calculation is the computation of t}]c currents
on the second reflector due to the currents OJ1 the first, since for N x N triangles on the first reflector,
each of the M x M triangles on the second reflector required tin N2 sum over the first. Since each
calculation requires the identical number of opmitions,  the N2 triangles can bc evenly distributed
over the nodes, and the sum done in parallel for each of the M2 triangles on the second reflector.
1 lowever,  since the computation of the currents on the first surfi~ce  is trivial, little (other than
storage) is gained  by distributing t}]c N2 triangles of the first reflector over the nodes. Computation
of the currents on each of the M2 triangles is evenly clistributtxi over the nodes ant] the computations
are done in parallel. 1 lcnce each node has a copy of the program for computing the integrand of
R]. (3), and each node computes t}le }1-field  and current for its assigned triangles. After each of the
nodes computes its M2/NODIiS  of the currents, the currents are then collected such that each node
has all the currents. To compute the field va]ucs,  each noclc  does Mz/NOl>IN  of the sum of l;q. (3)
utilizing the currents on the main (secorld) refkxtor. ‘1’hc final result is obtained by summing the
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Figme2.  Sc}]clllatics  of t}]ccoordi[latc  systeIlls.

fields obtained frcmeach  ofthc nodes.  ltispossiblc  to in~prov  cthcalgorithm  for storage (but only
anlinortin  lcsavings)  bynot collecting all thccurrcntscm  tl~c~l~ail~reflcctor,  sincccach  nodconly
nccdsits M21NODlUl currents todo thefields~l~~~lllatioil,

llxanlplcs aIld Conclusiol]s

As an example, we consictcr  the two parabola cxanlplc shown in l’igurc  4 (Reference 2). ‘1’his
is a portion of JPI. bcan~waveguide  systcm and is dcsignc.d to inlagc  the input feed pattern to the first
parabola at the output focus of the sccoJd  parabola. “]’]jc geometry is as showJI and for this
calculation a COW’(6)  feed pattern with q = 238.25  is used as an input. A typical output is shown in
l;igurc 5 with a comparison to measured data included.
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Figure 3, ‘1’ypical  n~esh projected in X-Y plane.

“1’hc typical tinw for a sn~all  e.xatnp]c is shown in “l’able 1. ~’he only part of the progran)  that

was parallclizcd was the portion which computes the second reflector currents from the first reftector
currents. For sufflcientlv lar~e problems this portion of the code dominates. ] lowcvcr, it is possible. -. .
to parallclize the field evaluation and this will bc done in the future. Observe thtit the efficiency of-

calculating the currents using  8 nodes is 98.6%,

Table 1. Dual reflector exanq)le  with 1(1372 triangles on each surfiace

# Nodes I 1

“]’illle  for first reflector currcntS 11

“J’ime  for second reftcctor currents 11,339

liield evaluation ]91

“1’otal (seconds) 11,721

4 I 8
12 13

2849 1437

192 194

3053 1644
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Figure 4. A two-n~irror  BWG system test setup.
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